HOTSPOT
You are running a training experiment on remote compute in Azure Machine Learning.
The experiment is configured to use a conda environment that includes the mlflow and azureml-contrib-run packages.
You must use MLflow as the logging package for tracking metrics generated in the experiment.
You need to complete the script for the experiment.
How should you complete the code? To answer, select the appropriate options in the answer area. NOTE: Each correct selection is worth one point.
Answer:
Explanation:
Box 1: import mlflow
Import the mlflow and Workspace classes to access MLflow’s tracking URI and configure your workspace.
Box 2: mlflow.start_run()
Set the MLflow experiment name with set_experiment() and start your training run with start_run().
Box 3: mlflow.log_metric(‘ ..’)
Use log_metric() to activate the MLflow logging API and begin logging your training run metrics.
Box 4: mlflow.end_run()
Close the run:
run.endRun()
Reference: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-use-mlflow
Leave a Reply